ivis is a machine learning algorithm for reducing dimensionality of very large datasets. **ivis** preserves global data structures in a low-dimensional space, adds new data points to existing embeddings using a parametric mapping function, and scales linearly to millions of observations. The algorithm is described in detail in [Structure-preserving visualisation of high dimensional single-cell datasets](#).

The latest development version is on [github](#).
1.1 Installation

The latest stable release can be installed from PyPi:

```
# TensorFlow 2 packages require a pip version >19.0.
pip install --upgrade pip
```

```
pip install ivis[cpu]
```

If you have CUDA installed and want ivis to use the tensorflow-gpu package, instead run `pip install ivis[gpu]`.

Note: ZSH users. If you’re running ZSH, square brackets are used for globbing / pattern matching. That means `ivis` should be installed as `pip install 'ivis[cpu]'` or `pip install 'ivis[gpu]'`

Alternatively, you can use `pip` to install the development version directly from github:

```
pip install git+https://github.com/beringresearch/ivis.git
```

Another option would be to clone the github repository and install from your local copy:

```
git clone https://github.com/beringresearch/ivis
cd ivis
pip install -e '.[cpu]'
```

1.2 Dependencies

- Python 3.5+
- tensorflow
ivis Documentation

- numpy>1.14.2
- scikit-learn>0.20.0
- tqdm
- annoy

```python
from ivis import Ivis
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data

# Scale the data to [0, 1]
X_scaled = MinMaxScaler().fit_transform(X)

# Set ivis parameters
model = Ivis(embedding_dims=2, k=15)

# Generate embeddings
embeddings = model.fit_transform(X_scaled)

# Export model
model.save_model('iris.ivis')
```

1.3 Getting Started

```python
from ivis import Ivis
from sklearn.preprocessing import MinMaxScaler
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data

# Scale the data to [0, 1]
X_scaled = MinMaxScaler().fit_transform(X)

# Set ivis parameters
model = Ivis(embedding_dims=2, k=15)

# Generate embeddings
embeddings = model.fit_transform(X_scaled)

# Export model
model.save_model('iris.ivis')
```

1.4 Bugs

Please report any bugs you encounter through the github issue tracker. It will be most helpful to include a reproducible example.
2.1 Installation

2.1.1 Prerequisites

R wrapper for ivis is provided via the reticulate library. Prior to installation, ensure that reticulate is available on your machine.

```
install.packages("reticulate")
```

Next, install virtualenv as it will be used to safely interface with the ivis Python package.

Note: Windows Installation. Note that virtual environment functions in the reticulate library are not supported on Windows. Instead, conda environment is recommended.

Finally, the easiest way to install ivis is using the devtools package:

```
devtools::install_github("beringresearch/ivis/R-package")
library(ivis)
install_ivis()
```

After ivis is installed, **restart your R session**.

Note: Newer versions of Keras use tensorflow as the default backend, however if for some reason this isn’t the case, add the following line to your environment variables:

```
export KERAS_BACKEND=tensorflow
```
2.2 Example

```r
library(ivis)
library(ggplot2)

model <- ivis(k = 3)
X <- data.matrix(iris[, 1:4])
X <- scale(X)
model <- model$fit(X)

xy <- model$transform(X)
dat <- data.frame(x=xy[,1], y=xy[,2], species=iris$Species)

ggplot(dat, aes(x=x, y=y)) + geom_point(aes(color=species)) + theme_classic()
```

2.3 Vignette

The `ivis` package includes a vignette that demonstrates an example workflow using single-cell RNA-sequencing data.

To compile and install this vignette on your system, you need to first have a working installation of `ivis`. For this, please follow the instructions above.

Once you have a working installation of `ivis`, you can reinstall the package including the compiled vignette using the following command:

```r
devtools::install_github("beringresearch/ivis/R-package", build_vignettes = TRUE, force = TRUE)
```
ivis uses several hyperparameters that can have an impact on the desired embeddings:

- **embedding_dims**: Number of dimensions in the embedding space.
- **k**: The number of nearest neighbours to retrieve for each point.
- **n_epochs_without_progress**: After n number of epochs without an improvement to the loss, terminate training early.
- **model**: the keras model that is trained using triplet loss. If a model object is provided, an embedding layer of size `embedding_dims` will be appended to the end of the network. If a string is provided, a pre-defined network by that name will be used. Possible options are: 'szubert', 'hinton', 'maaten'. By default the 'szubert' network will be created, which is a selu network composed of 3 dense layers of 128 neurons each, followed by an embedding layer of size `embedding_dims`.

k, n_epochs_without_progress, and model are tunable parameters that should be selected on the basis of dataset size and complexity. The following table summarizes our findings:

<table>
<thead>
<tr>
<th>Observations</th>
<th>k</th>
<th>n_epochs_without_progress</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1000</td>
<td>10-15</td>
<td>20-30</td>
<td>maaten</td>
</tr>
<tr>
<td>1000-10000</td>
<td>10-30</td>
<td>10-20</td>
<td>maaten</td>
</tr>
<tr>
<td>10000-50000</td>
<td>15-150</td>
<td>10-20</td>
<td>maaten</td>
</tr>
<tr>
<td>50K-100K</td>
<td>15-150</td>
<td>10-15</td>
<td>maaten</td>
</tr>
<tr>
<td>100K-500K</td>
<td>15-150</td>
<td>5-10</td>
<td>maaten</td>
</tr>
<tr>
<td>500K-1M</td>
<td>15-150</td>
<td>3-5</td>
<td>szubert</td>
</tr>
<tr>
<td>> 1M</td>
<td>15-150</td>
<td>2-3</td>
<td>szubert</td>
</tr>
</tbody>
</table>

We will now look at each of these parameters in turn.
3.1 k

This parameter controls the balance between local and global features of the dataset. Low k values will result in prioritisation of local dataset features and the overall global structure may be missed. Conversely, high k values will force ivis to look at broader aspects of the data, losing desired granularity. We can visualise effects of low and large values on k on the Levine dataset (104,184 x 32).

Box plots represent distances across pairs of points in the embeddings, binned using 50 equal-width bins over the pairwise distances in the original space using 10,000 randomly selected points, leading to 49,995,000 pairs of pairwise distances. For each embedding, the value of the Pearson correlation coefficient computed over the pairs of pairwise distances is reported. We can see that where $k=5$, smaller distances are better preserved, whilst larger distances have higher variability in the embedding space. As k values increase, larger distances are beginning to be better preserved as well. However, for very large k, smaller distances are no longer preserved.

To establish an appropriate value of k, we evaluated a range of values across a severao subsamples of varying sizes, keeping $\text{n_epochs_without_progress}$ and model hyperparameters fixed.
Accuracy was calculated by training a Support Vector Machine classifier on 75% of each subsample and evaluating the classifier performance on the remaining 25%, whilst predicting manually assigned cell types in the Levine dataset. Accuracy was high and generally stable for k between 10 and 150. A decrease was observed when k was considerably large in relation to subsample size.

Overall, ivis is fairly robust to values of k, which can control the local vs. global trade off in the embedding space.

3.2 n_epochs_without_progress

This patience hyperparameter impacts both the quality of embeddings and speed with which they are generated. Generally, the higher `n_epochs_without_progress` are, the more accurate are the low-dimensional features. However, this comes at a computational cost. Here we examine, the speed vs. accuracy trade-off and recommend sensible defaults. For this experiment ivis hyperparameters were set to $k=15$ and `model='maaten'`.

Three datasets were used Levine (104,184 x 32), MNIST (70,000 x 784), and Melanoma (4,645 x 23,686). The Melanoma featurespace was further reduced to $n=50$ using Principal Component Analysis.

For each dataset, we trained a Support Vector Machine classifier to assess how well ivis embeddings capture manually supplied response variable information. For example, in case of an MNIST dataset, the response variable is the digit label, whilst for Levine and Melanoma datasets it is the cell type. SVM classifier was trained on ivis embeddings representing 3%, 40%, and 95% of the data obtained using a stratified random subsampling. The classifier was then validated on the ivis embeddings of the remaining 97%, 60%, and 5% of data. For each train-
ing set split, an ivis model was trained by keeping the \(k \) and model hyperparameters constant, whilst varying \texttt{n_epochs_without_progress}. Finally, classification accuracies were normalised to a 0-1 range to facilitate comparisons between datasets.

Our final results indicate that overall accuracy of embeddings is a function of dataset size and \texttt{n_epochs_without_progress}. However, only marginal gain in performance is achieved when \texttt{n_epochs_without_progress}>20. For large datasets (\texttt{n_observations}>10000), \texttt{n_epochs_without_progress} between 3 and 5 comes to within 85% of optimal classification accuracy.

3.3 model

The model hyperparameter is a powerful way for ivis to handle complex non-linear feature-spaces. It refers to a trainable neural network that learns to minimise a triplet loss loss function. Structure-preserving dimensionality reduction is achieved by creating three replicates of the baseline architecture and assembling these replicates using a siamese neural network (SNNs). SNNs are a class of neural network that employ a unique architecture to naturally rank similarity between inputs. The ivis SNN consists of three identical base networks; each base network is followed by a final embedding layer. The size of the embedding layer reflects the desired dimensionality of outputs.
The `model` parameter is defined using a Keras model. This flexibility allows ivis to be trained using complex architectures and patterns, including convolutions. Out of the box, ivis supports three styles of baseline architectures - `szubert`, `hinton`, and `maaten`. This can be passed as string values to the `model` parameter.

3.3.1 ‘szubert’

The `szubert` network has three dense layers of 128 neurons followed by a final embedding layer (128-128-128). The size of the embedding layer reflects the desired dimensionality of outputs. The layers preceding the embedding layer use the SELU activation function, which gives the network a self-normalizing property. The weights for these layers are randomly initialized with the LeCun normal distribution. The embedding layers use a linear activation and have their weights initialized using Glorot’s uniform distribution.

3.3.2 ‘hinton’

The `hinton` network has three dense layers (2000-1000-500) followed by a final embedding layer. The size of the embedding layer reflects the desired dimensionality of outputs. The layers preceding the embedding layer use the SELU activation function. The weights for these layers are randomly initialized with the LeCun normal distribution. The embedding layers use a linear activation and have their weights initialized using Glorot’s uniform distribution.
3.3.3 ‘maaten’

The *maaten* network has three dense layers (500-500-2000) followed by a final embedding layer. The size of the embedding layer reflects the desired dimensionality of outputs. The layers preceding the embedding layer use the SELU activation function. The weights for these layers are randomly initialized with the LeCun normal distribution. The embedding layers use a linear activation and have their weights initialized using Glorot’s uniform distribution.

Let’s examine each architectural option in greater detail:

Selecting an appropriate baseline architecture is a data-driven task. Three unique architectures that are shipped with ivis perform consistently well across a wide array of tasks. A general rule of thumb in our own experiments is to use the *szubert* network for computationally-intensive processing on large datasets (>1 million observations) and select *maaten* architecture for smaller real-world datasets.
ivis is able to make use of any provided class labels to perform supervised dimensionality reduction. Supervised ivis can thus be used in Metric Learning applications, as well as classical supervised classifier/regressor problems. Supervised embeddings can combine the distance-based characteristics of the unsupervised ivis algorithm with clear class boundaries between the class categories when trained to classify inputs simultaneously to embedding them. The resulting embeddings encode relevant class-specific information into lower dimensional space, making them useful for enhancing the performance of a classifier.

ivis supports both classification and regression problems and makes use of the losses included with keras, so long as the labels are provided in the correct format.

4.1 Classification

To train ivis in supervised mode using the default softmax classification loss, simply provide the labels to the fit method’s Y parameter. These labels should be a list of 0-indexed integers with each integer corresponding to a class.

```python
import numpy as np
from tensorflow.keras.datasets import mnist
from ivis import Ivis

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

# Rescale to [0,1]
X_train = X_train / 255.
X_test = X_test / 255.

# Flatten images to 1D vectors
X_train = np.reshape(X_train, (len(X_train), 28 * 28))
X_test = np.reshape(X_test, (len(X_test), 28 * 28))

model = Ivis(n_epochs_without_progress=5)
model.fit(X_train, Y_train)
```
Experimental data has shown that ivis converges to a solution faster in supervised mode. Therefore, our suggestion is to lower the value of the \texttt{n_epochs_without_progress} parameter from the default to around 5. Here are the resulting embeddings:

![Unsupervised vs Supervised Embeddings](image)

4.1.1 Obtaining Classification Probabilities

Since training \texttt{ivis} in supervised mode causes the algorithm to optimize the supervised objective in conjunction with the triplet loss function, it is possible to obtain the outputs of the supervised network using the \texttt{score_samples} method. These may be useful for assessing the quality of the embeddings by examining the performance of the classifier, for example, or for predicting the labels for unseen data.

```python
weight = 0.8
model = Ivis(n_epochs_without_progress=5,
              supervision_weight=weight)
model.fit(X_train, Y_train)
embeddings = model.transform(X_test)
y_pred = model.score_samples(X_test)
```

As before, we can train several supervised \texttt{ivis} models on the MNIST dataset, varying the \texttt{supervision_weight} parameter, coloring the plots according to the max of the returned softmax probabilities.
Coloring by the max softmax probabilities shows the degree of certainty in the supervised network’s predictions - areas that are yellow are predicted with a higher degree of confidence while those in blue and green have a lower degree of confidence. With low supervision weight, more of the data is classified with a low degree of certainty. Additionally, points floating in the centre between clusters tend to have lower class predictions associated with them.

We also checked the accuracy of the ivis classifiers when used to predict the test set labels across the different supervision weights. In general, increasing the supervision weight improved the classifier’s predictive performance on the test set, with maximum performance achieved with a weight of 0.9. At this weight the triplet loss continues to have a small regularizing effect on the results, which may improve the generalizability of the classifier compared to a pure softmax classifier.
It's also possible to utilize different supervised metrics to train the supervised network by adjusting the `supervised_metric` parameter. By selecting `categorical_hinge` it is possible to optimize a linear SVM on the data in conjunction with the triplet loss.

Below is an example of training ivis in supervised mode in tandem with a linear SVM on the Fashion MNIST dataset. Note that the `categorical_hinge` loss function expects one-hot encoded labels. We can achieve this using the `to_categorical` function from keras utils.

```python
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from ivis import Ivis
import numpy as np

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

# Flatten images
X_train = np.reshape(X_train, (len(X_train), 28 * 28)) / 255.
X_test = np.reshape(X_test, (len(X_test), 28 * 28)) / 255.

# One-hot encode labels
Y_train = to_categorical(Y_train)
Y_test = to_categorical(Y_test)

model = Ivis(n_epochs_without_progress=5,
              supervision_metric='categorical_hinge')
model.fit(X_train, Y_train)
```

4.1.2 Linear-SVM classifier

Below is an example of training ivis in supervised mode in tandem with a linear SVM on the Fashion MNIST dataset. Note that the `categorical_hinge` loss function expects one-hot encoded labels. We can achieve this using the `to_categorical` function from keras utils.

```python
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
from ivis import Ivis
import numpy as np

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

# Flatten images
X_train = np.reshape(X_train, (len(X_train), 28 * 28)) / 255.
X_test = np.reshape(X_test, (len(X_test), 28 * 28)) / 255.

# One-hot encode labels
Y_train = to_categorical(Y_train)
Y_test = to_categorical(Y_test)

model = Ivis(n_epochs_without_progress=5,
              supervision_metric='categorical_hinge')
model.fit(X_train, Y_train)
```
embeddings = model.transform(X_test)
y_pred = model.score_samples(X_test)

The resulting embeddings show ivis trained with a Linear SVM using the *categorical_hinge* metric over a variety of supervision_weight values. The maximum achieved accuracy on the test set was 98.02% - once again, a supervision weight of 0.9 led to the highest classification performance.
4.1.3 Multi-label classification

In cases where a single observation is accompanied by multiple response variables, ivis implements support for multi-label classification. Ensuring that y is a multi-dimensional array ($N \times L$), where L is the number of unique labels, multi-label model can be fitted as:

```python
ivis = Ivis(k=30, model='maaten', supervision_metric='binary_crossentropy')
ivis.fit(x, y)
```

Note that the only requirement is that supervision metric is set to `binary_crossentropy`.

4.2 Regression

It is also possible to perform supervised training on continuous labels. To do this, a regression metric should be provided to `supervision_metric` when constructing the Ivis object. Many of these exist in Keras, including mean-absolute-error, mean-squared error, and logcosh.

In the example below, ivis is trained on the boston housing dataset using the mean-absolute-error supervised metric (mae).

```python
from ivis import Ivis
from tensorflow.keras.datasets import boston_housing
import numpy as np

(X_train, Y_train), (X_test, Y_test) = boston_housing.load_data()
```
supervision_metric = 'mae'
ivis_boston = Ivis(k=15, batch_size=16, supervision_metric=supervision_metric)
ivis_boston.fit(X_train, Y_train)

train_embeddings = ivis_boston.transform(X_train)
y_pred_train = ivis_boston.score_samples(X_train)

test_embeddings = ivis_boston.transform(X_test)
y_pred_test = ivis_boston.score_samples(X_test)

The embeddings on the training set are shown below. On the left are the embeddings are colored by the ground truth label; the right is colored by predicted values. There is a high degree of correlation between the predicted and actual values, with an R-squared value of 0.82.

![Training set embeddings](image1)

The embeddings on the test set are below. Again, the left is colored by the ground truth label, while the right is colored by predicted values. There is a also a high degree of correlation between the predicted and actual values on the test set, although it is lower than on the training set - the R-squared value is 0.63.

![Test set embeddings](image2)
4.3 Supervision Weight

It is possible to control the relative importance `ivis` places on the labels when training in supervised mode with the `supervision_weight` parameter. This variable should be a float between 0.0 to 1.0, with higher values resulting in supervision affecting the training process more, and smaller values resulting in it impacting the training less. By default, the parameter is set to 0.5. Increasing it to 0.8 will result in more cleanly separated classes.

```python
weight = 0.8
model = Ivis(n_epochs_without_progress=5,
             supervision_weight=weight)
model.fit(X_train, Y_train)
```

As an illustration of the impact the `supervision_weight` has on the resulting embeddings, see the following plot of supervised `ivis` applied to MNIST with different weight values:
Sometimes only part of a dataset has ground-truth labels available. In such a scenario, ivis is still able to make use of existing label information in conjunction with the inputs to do dimensionality reduction when in semi-supervised mode. When in semi-supervised mode, ivis will use labels when available as well as the unsupervised triplet loss. However, when label information is not available, only the unsupervised loss will be used. By training in semi-supervised mode, we can make full use of the data available, even if it is only partially labeled.

In order to use semi-supervised learning, mark missing labeled points as -1 in the Y vector provided to ivis when calling fit or fit_transform. Currently, only sparse_categorical_crossentropy loss works with semi-supervised inputs.

5.1 Semi-supervised Classification

To train ivis in semi-supervised mode using the default softmax classification loss, simply provide the labels to the fit method’s Y parameter. These labels should be a list of 0-indexed integers with each integer corresponding to a class. Missing labels should be denoted with -1.

In the example below, we will mask 50% of the available labels for the MNIST dataset.

```python
import numpy as np
from tensorflow.keras.datasets import mnist
from ivis import Ivis

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

# Rescale to [0,1]
X_train = X_train / 255.
X_test = X_test / 255.

# Flatten images to 1D vectors
X_train = np.reshape(X_train, (len(X_train), 28 * 28))
X_test = np.reshape(X_test, (len(X_test), 28 * 28))

# Mask labels
(continues on next page)
Experimental data has shown that *ivis* converges to a solution faster in supervised mode. Therefore, our suggestion is to lower the value of the `n_epochs_without_progress` parameter from the default to around 5. Here are the resulting embeddings on the testing set:

![Embeddings on testing set](image)

### 5.2 Supervision Weight

As in supervised mode, it is still possible to control the relative importance *ivis* places on the labels when training in supervised mode with the `supervision_weight` parameter. This variable should be a float between 0.0 to 1.0, with higher values resulting in supervision affecting the training process more, and smaller values resulting in it impacting the training less. By default, the parameter is set to 0.5. Increasing it will result in more cleanly separated classes.

```python
weight = 0.8
model = Ivis(n_epochs_without_progress=5)
model.fit(X_train, Y_train_masked)
```
As an illustration of the impact the `supervision_weight` has on the resulting embeddings, see the following plot of supervised `ivis` applied to MNIST with different weight values:

In semi-supervised mode, the supervision weight may need to be higher to have the same effect on the resulting embeddings as in supervised mode, depending on the dataset. This is because when unlabeled points are encountered, unsupervised loss will still have an impact, while the supervised loss will not apply. The more of the dataset is unlabeled, the higher the supervision weight should be to have an impact on the embeddings.
Chapter 5. Semi-supervised Dimensionality Reduction
Callbacks are called periodically during training of the ivis model. These allow you to get an insight into the progress being made during training. With this information, you may decide to terminate a training session early due to a lack of improvements to the visualizations, for example. They also provide helpful logging features, allowing you to periodically save a checkpoint of an ivis model which can be used to resuming training later.

To use a callback during training, simply pass a list of callback objects to the Ivis object when creating it using the callbacks keyword argument. The ivis.nn.callbacks module contains a set of callbacks provided for use with ivis models. However, any keras.callbacks.Callbacks object can be passed and will be used during training: for example, keras.callbacks.TensorBoard.

### 6.1 ModelCheckpoint

```python
class ivis.nn.callbacks.ModelCheckpoint (log_dir='./model_checkpoints', filename='model-checkpoint_{}.ivis', epoch_interval=1)
```

Bases: sphinx.ext.autodoc.importer._MockObject

Periodically saves the model during training. By default, it saves the model every epoch; increasing the `epoch_interval` will make checkpointing less frequent.

If the given filename contains the `{}` string, the epoch number will be substituted in, resulting in multiple checkpoint folders with different names. If a filename such as ‘ivis-checkpoint’ is provided, only the latest checkpoint will be kept.

**Parameters**

- `log_dir (str)` – Folder to save resulting embeddings.
- `filename (str)` – Filename to save each file as. `{}` in string will be substituted with the epoch number.

Example usage:
from ivis.nn.callbacks import ModelCheckpoint from ivis import Ivis

# Save only the latest checkpoint to current directory every 10 epochs
checkpoint_callback = ModelCheckpoint(log_dir='./',
    filename='latest-checkpoint.ivis',
    epoch_interval=10)

model = Ivis(callbacks=[checkpoint_callback])

6.2 EmbeddingsLogging

class ivis.nn.callbacks.EmbeddingsLogging(data, log_dir='./embeddings_logs',
    filename='{}-embeddings.npy',
    epoch_interval=1)

Bases: sphinx.ext.autodoc.importer._MockObject

Periodically saves embeddings of the data provided to data using the latest state of the Ivis model. By default, saves embeddings every epoch; increasing the epoch_interval will save the embeddings less frequently.

Parameters

- **data** (list[float]) – Data to embed with the latest Ivis object
- **log_dir** (str) – Folder to save resulting embeddings.
- **filename** (str) – Filename to save each file as. {{}} in string will be substituted with the epoch number.

Example usage:

```python
from ivis.nn.callbacks import EmbeddingsLogging from ivis import Ivis from tensorflow.keras.datasets import mnist

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

Save embeddings of test set every epoch
embeddings_callback = EmbeddingsLogging(X_test,
 log_dir='test-embeddings',
 filename='{}-test_embeddings.npy',
 epoch_interval=1)

model = Ivis(callbacks=[embeddings_callback])

Train on training set
model.fit(X_train)
```

6.3 EmbeddingsImage

class ivis.nn.callbacks.EmbeddingsImage(data, labels=None, log_dir='./logs',
    filename='{}-embeddings.png',
    epoch_interval=1)

Bases: sphinx.ext.autodoc.importer._MockObject
Periodically generates and plots 2D embeddings of the data provided to `data` using the latest state of the `Ivis` model. By default, saves plots of the embeddings every epoch; increasing the `epoch_interval` will save the plots less frequently.

**Parameters**

- **data** (`list[float]`) – Data to embed and plot with the latest Ivis model
- **labels** (`list[int]`) – Labels with which to colour plotted embeddings. If `None` all points will have the same color.
- **log_dir** (`str`) – Folder to save resulting embeddings.
- **filename** (`str`) – Filename to save each file as. `{}` in string will be substituted with the epoch number.

Example usage:

```python
from ivis.nn.callbacks import EmbeddingsImage
from ivis import Ivis
from tensorflow.keras.datasets import mnist

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

Plot embeddings of test set every epoch colored by labels
embeddings_callback = EmbeddingsImage(X_test, Y_test,
 log_dir='test-embeddings',
 filename='/_test_embeddings.npy',
 epoch_interval=1)

model = Ivis(callbacks=[embeddings_callback])

Train on training set
model.fit(X_train)
```

### 6.4 TensorBoardEmbeddingsImage

**class** `ivis.nn.callbacks.TensorBoardEmbeddingsImage` (`data`, `labels=None`, `log_dir='./logs'`, `epoch_interval=1`)

**Bases:** `sphinx.ext.autodoc.importer._MockObject`

Periodically generates and plots 2D embeddings of the data provided to `data` using the latest state of the `Ivis` model. The plots are designed to be viewed in Tensorboard, which will provide an image that shows the history of embeddings plots through training. By default, saves plots of the embeddings every epoch; increasing the `epoch_interval` will save the plots less frequently.

**Parameters**

- **data** (`list[float]`) – Data to embed and plot with the latest Ivis
- **labels** (`list[int]`) – Labels with which to colour plotted embeddings. If `None` all points will have the same color.
- **log_dir** (`str`) – Folder to save resulting embeddings.
- **filename** (`str`) – Filename to save each file as. `{}` in string will be substituted with the epoch number.

Example usage:
from ivis.nn.callbacks import TensorBoardEmbeddingsImage
from ivis import Ivis
from tensorflow.keras.datasets import mnist

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

# Plot embeddings of test set every epoch colored by labels
embeddings_callback = TensorBoardEmbeddingsImage(X_test, Y_test,
                                                  log_dir='test-embeddings',
                                                  filename='{}_test_embeddings.npy',
                                                  epoch_interval=1)

model = Ivis(callbacks=[embeddings_callback])

# Train on training set
model.fit(X_train)
Several examples of how ivis can be used in common machine learning tasks.

Note: Click [here](#) to download the full example code

### 7.1 Supervised Dimensionality Reduction with ivis

ivis is able to make use of any provided class labels to perform supervised dimensionality reduction. Supervised embeddings combine the distance-based characteristics of the unsupervised ivis algorithm with clear class boundaries between the class categories. The resulting embeddings encode relevant class-specific information into lower dimensional space, making them useful for enhancing the performance of a classifier.

To train ivis in supervised mode, simply provide the labels to the fit method’s Y parameter. These labels should be a list of 0-indexed integers with each integer corresponding to a class.

```python
import numpy as np
from tensorflow.keras.datasets import mnist
from ivis import Ivis

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

Rescale to 0-1
X_train = X_train / 255.
X_test = X_test / 255.

Flatten images to 1D vectors
X_train = np.reshape(X_train, (len(X_train), 28 * 28))
X_test = np.reshape(X_test, (len(X_test), 28 * 28))

model = Ivis(n_epochs_without_progress=5)
model.fit(X_train, Y_train)
```
7.2 Applying ivis to the MNIST Dataset

Ivis can be easily applied to unstructured datasets, including images. Here we visualise the MNSIT digits dataset using two-dimensional ivis embeddings.

```python
import os
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
from ivis import Ivis

mnist = fetch_openml('mnist_784', version=1)

ivis = Ivis(model='maaten', verbose=0)
embeddings = ivis.fit_transform(mnist.data)

color = mnist.target.astype(int)

plt.figure(figsize=(8, 8), dpi=150)
plt.scatter(x=embeddings[:, 0], y=embeddings[:, 1], c=color, cmap="Spectral", s=0.1)
plt.xlabel('ivis 1')
plt.ylabel('ivis 2')
plt.show()

os.remove('annoy.index')
```

7.3 iris dataset

Example of reducing dimensionality of the iris dataset using ivis.

```python
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from ivis import Ivis

sns.set(context='paper', style='white')

X = load_iris().data
X = MinMaxScaler().fit_transform(X)
```
ivis = Ivis(k=5, model='maaten', verbose=0)
ivis.fit(X)
embeddings = ivis.transform(X)

plt.figure(figsize=(5, 5), dpi=100)
plt.scatter(embeddings[:, 0], embeddings[:, 1], c=load_iris().target, s=20)
plt.xlabel('ivis 1')
plt.ylabel('ivis 2')
plt.title('ivis embeddings of the iris dataset')
plt.show()

Total running time of the script: (0 minutes 0.000 seconds)

Note: Click here to download the full example code

7.4 Integrating ivis with standard sklearn pipelines

Ivis class extends sklearn’s BaseEstimator, making it easy to incorporate ivis into a standard classification or regression pipeline.

```python
from sklearn.datasets import make_classification
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from ivis import Ivis

Make a toy dataset
X, y = make_classification(n_samples=1000, n_features=300, n_informative=250, n_redundant=0, n_repeated=0, n_classes=2, random_state=1234)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1234)

ivis = Ivis(model='maaten', k=10)
svc = LinearSVC(dual=False, random_state=1234)

clf_pipeline = Pipeline(steps=[('scaler', MinMaxScaler()), ('ivis', ivis), ('svc', svc)])
clf_pipeline.fit(X_train, y_train)

print("Accuracy on the test set with ivis transformation: {:.3f}".format(clf_pipeline.score(X_test, y_test)))
```

Total running time of the script: (0 minutes 0.000 seconds)
This example will demonstrate how `ivis` can be used to visualise single cell experiments. Data import, preprocessing and normalisation are handled by the Scanpy module. The data that will be used in this example consists of 3,000 PBMCs from a healthy donor and is freely available from 10x Genomics. Now, let’s download the data and get started.

```python
mkdir data
wget http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz -O data/pbmc3k_filtered_gene_bc_matrices.tar.gz
cd data; tar -xzf pbmc3k_filtered_gene_bc_matrices.tar.gz
```

```python
import numpy as np
import pandas as pd
import scanpy as sc

sc.settings.verbosity = 3
sc.logging.print_versions()
results_file = './write/pbmc3k.h5ad'
adata = sc.read_10x_mtx(
 './data/filtered_gene_bc_matrices/hg19/',
 var_names='gene_symbols',
 cache=True)
```

We can now carry out basic filtering and handling of mitochondrial genes:

```python
adata.var_names_make_unique()
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
mito_genes = adata.var_names.str.startswith('MT-')
for each cell compute fraction of counts in mito genes vs. all genes
the `.A1` is only necessary as X is sparse (to transform to a dense array after summing)
```
# add the total counts per cell as observations-annotation to adata
adata.obs['n_counts'] = adata.X.sum(axis=1).A1
adata = adata[adata.obs['n_genes'] < 2500, :]
adata = adata[adata.obs['percent_mito'] < 0.05, :]

Let’s normalise the data and apply log-transformation:

```python
sc.pp.normalize_per_cell(adata, counts_per_cell_after=1e4)
scc.pp.log1p(adata)
adata.raw = adata
```

Identify highly-variable genes and do the filtering:

```python
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)
adata = adata[:, adata.var['highly_variable']]
sc.pp.regress_out(adata, ['n_counts', 'percent_mito'])
```

It’s recommended to apply PCA-transformation of normalised data - this step tends to denoise the data.

```python
sc.pp.scale(adata, max_value=10)
scc.tl.pca(adata, svd_solver='arpack')
```

### 8.1 Reducing Dimensionality Using ivis

```python
import matplotlib.pyplot as plt
from ivis import Ivis
```

For most single cell datasets, the following hyperparameters can be used:

- k=15
- model='maaten'
- n_epochs_without_progress=5

**Note:** Keep in mind that this is a very small experiment (<3000 observations) and there are plenty of fast and accurate algorithm designed for these kinds of datasets e.g. UMAP. However, if you have >250,000 cells, ivis considerably outperforms state-of-the-art both in speed and accuracy of embeddings. See our timings benchmarks for more information on this.

```python
X = adata.obsm['X_pca']
ivis = Ivis(k=15, model='maaten', n_epochs_without_progress=5)
ivis.fit(X)
embeddings = ivis.transform(X)
```

Finally, let’s visualise our embeddings, coloured by the CST3 gene!
ivis effectively captured three distinct cellular populations in this small dataset. Note that ivis is an “honest” algorithm and distances between observations are meaningful. Our benchmarks show that ivis is ~10% better at preserving local and global distances in low-dimensional space than comparable state-of-the-art algorithms. Additionally, ivis is robust against noise and outliers, unlike t-SNE, which tends to group random noise into well-defined clusters that can be potentially misleading.
Comparing ivis with other dimensionality reduction algorithms

Ivis aims to reduce data dimensionality whilst preserving both global and local structures. There are a number of real-world applications where this feature could be useful. For example:

- Anomaly detection
- Biological interpretation of high-throughput experiments
- Feature extraction

Several algorithms have been proposed to address the problem of dimensionality reduction, including UMAP and t-SNE. UMAP in particular, has been successfully applied in machine learning pipelines. Ivis is different to these approaches in several ways.

First, ivis does not make any assumptions as to the inherent structure of the dataset. Second, ivis is designed to handle both small and extremely large datasets. Ivis performs well on toy datasets such as the iris dataset, and scales linearly to datasets with millions of observations. Indeed, we see that the main use case for ivis are datasets with > 250,000 observations. Finally, ivis prioritises interpretation over visual appearance - this is accomplished by imposing meaning to distances between points in the embedding space. As such, ivis does not create spurious clusters nor does it artificially pack clusters closer together. Embeddings aim to be true to the original structure of the data, which can be noisy in a real-world setting.

9.1 Visual Assessment

We will visually examine how popular dimensionality reduction algorithms - UMAP, t-SNE, Isomap, MDS, and PCA - approach two synthetic datasets with 5,000 observations in each. Since we are concerned with a dimensionality reduction problem, we will artificially add redundant features to the original datasets using polynomial combinations (degree 10) of the original features.

9.1.1 Random Noise

To start, let’s examine how various dimensionality reduction methods behave in the presence of random noise. We generated 5000 uniformly distributed random points in a two-dimensional space and expanded the feature set using
polynomial combinations. In all cases default parameters were used to fit multiple models.

Both ivis and PCA reliably recovered the random nature of our dataset. Conversely, Isomap, UMAP, and t-SNE appeared to pack certain points together, creating an impression of clusters within uniform random noise.

### 9.1.2 Structured Datasets

Next, we examine how well global features of a dataset, such as relative position of clusters, can be recovered in a low-dimensional space.
Using default parameters, we can see that ivis captures both the general structure of each half-moon, as well as their relative positions to one another. Both UMAP and t-SNE appear to introduce spurious clusters and global relationships between the half-moons appear to be disrupted.

Similarly as above, UMAP and t-SNE appear to generate a large number of small clusters along the continuous distribution of the dataset. Although the global structure is relatively well-preserved, ivis maintains both global and local structures of the dataset.

### 9.2 Quantitative Evaluation

To measure how well each algorithm preserves global distances, we examined correlation between points in the original dataset and the embedding space. For this analysis, 10,000 observations were chosen from the Levine dataset (104,184 x 32) using random uniform sampling. Box plots represent distances across pairs of points in the embeddings, binned using 50 equal-width bins over the pairwise distances in the original space. Pearson correlation coefficients were also computed over the pairs of distances.
ivis appeared to preserve both a small-, mid-, and large-scale L1 and L2 distances, whilst UMAP and t-SNE seemed to ignore mid- to large-scale distances. Interestingly, ivis was particularly good at preserving L2 distances in low-dimensional space.
10.1 Introduction

10.1.1 Metric Learning

Metric Learning is a machine learning task that aims to learn a distance function over a set of observations. This can be useful in a number of applications, including clustering, face identification, and recommendation systems.

ivis was developed to address this task using concepts of the Siamese Neural Networks. In this example, we will demonstrate that Metric Learning using ivis can effectively deal with class imbalance, yielding features resulting in state-of-the-art classification performance.

10.1.2 Supervised Dimensionality Reduction

ivis is able to make use of any provided class labels to perform supervised dimensionality reduction. Supervised embeddings combine the distance-based characteristics of the unsupervised ivis algorithm with clear class boundaries between the class categories. This is achieved by simultaneously minimising the triplet loss and softmax loss functions. The resulting embeddings encode relevant class-specific information into lower dimensional space. It is possible to control the relative importance ivis places on class labels when training in supervised mode with the classification_weight parameter. This variable should be a float between 0.0 to 1.0, with higher values resulting in classification affecting the training process more, and smaller values resulting in it impacting the training less. By default, the parameter is set to 0.5. Increasing it to 0.8 will result in more cleanly separated classes.

10.2 Results

10.2.1 Data Selection

In this example we will make use of the Credit Card Fraud Dataset. The datasets contains transactions made by credit cards in September 2013 by european cardholders. This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive class (frauds) account...
for 0.172% of all transactions. Traditional supervised classification approaches would typically balance the training dataset either by over-sampling the minority class or down-sampling the majority class. Here, we investigate how ivis handles class imbalance.

### 10.2.2 Data Preparation

```python
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, average_precision_score, roc_auc_score, classification_report
from sklearn.linear_model import LogisticRegression
from ivis import Ivis

data = pd.read_csv('../input/creditcard.csv')
Y = data['Class']

The Credit Card Fraud dataset is highly skewed, consisting of 492 frauds in a total of 284,807 observations (0.17% fraud cases). The features consist of numerical values from the 28 ‘Principal Component Analysis (PCA)’ transformed features, as well as Time and Amount of a transaction.

In this analysis we will train ivis algorithm using a 5% stratified subsample of the dataset. Our previous experiments have shown that ivis can yield >90% accurate embeddings using just 1% of the total data.

```python
train_X, test_X, train_Y, test_Y = train_test_split(data, Y, stratify=Y, test_size=0.95, random_state=1234)
```

Next, because ivis will learn a distance over observations, scaling must be applied to features. Additionally, transforming the data to a range [0, 1] allows the neural network to extract more meaningful features.

```python
standard_scaler = StandardScaler().fit(train_X[['Time', 'Amount']])
train_X.loc[:, ['Time', 'Amount']] = standard_scaler.transform(train_X[['Time', 'Amount']])
test_X.loc[:, ['Time', 'Amount']] = standard_scaler.transform(test_X[['Time', 'Amount']])

minmax_scaler = MinMaxScaler().fit(train_X)
train_X = minmax_scaler.transform(train_X)
test_X = minmax_scaler.transform(test_X)
```

10.2.3 Dimensionality Reduction

Now, we can run ivis using default hyperparameters for supervised embedding problems:

```python
ivis = Ivis(embedding_dims=2, model='maaten', k=15, n_epochs_without_progress=5, classification_weight=0.80, verbose=0)
ivis.fit(train_X, train_Y.values)
```

42 Chapter 10. Metric Learning with Application to Supervised Anomaly Detection
Finally, let’s embed the training set and extrapolate learnt embeddings to the testing set.

```python
train_embeddings = ivis.transform(train_X)
test_embeddings = ivis.transform(test_X)
```

10.2.4 Visualisations

```python
fig, ax = plt.subplots(1, 2, figsize=(17, 7), dpi=200)
ax[0].scatter(x=train_embeddings[:, 0], y=train_embeddings[:, 1], c=train_Y, s=3, cmap='RdYlBu_r')
ax[0].set_xlabel('ivis 1')
ax[0].set_ylabel('ivis 2')
ax[0].set_title('Training Set')
ax[1].scatter(x=test_embeddings[:, 0], y=test_embeddings[:, 1], c=test_Y, s=3, cmap='RdYlBu_r')
ax[1].set_xlabel('ivis 1')
ax[1].set_ylabel('ivis 2')
ax[1].set_title('Testing Set')
```

With anomalies being shown in red, we can see that ivis:

1. Effectively learnt embeddings in an unbalanced dataset.
2. Successfully extrapolated learnt metrics to a testing subset.

10.2.5 Linear Classifier

We can train a simple linear classifier to assess how well ivis learned the class representations.

```python
clf = LogisticRegression(solver="lbfgs").fit(train_embeddings, train_Y)
```
```python
labels = clf.predict(test_embeddings)
proba = clf.predict_proba(test_embeddings)

print(classification_report(test_Y, labels))
print('Confusion Matrix')
print(confusion_matrix(test_Y, labels))
print('Average Precision: ' + str(average_precision_score(test_Y, proba[:, 1])))
print('ROC AUC: ' + str(roc_auc_score(test_Y, labels)))

<table>
<thead>
<tr>
<th>precision</th>
<th>recall</th>
<th>f1-score</th>
<th>support</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>270100</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
</tr>
</tbody>
</table>

accuracy 1.00 270567
macro avg 1.00 1.00 270567
weighted avg 1.00 1.00 1.00 270567

Confusion Matrix
[[270100 0]
[3 464]]
Average Precision: 0.9978643591710002
ROC AUC: 0.9967880085653105
```

10.3 Conclusions

ivis effectively learns a distance metric over an unbalanced dataset. The resulting feature set can be used with a simple linear model classifier to achieve state-of-the-art performance on a classification task.
Training ivis on Out-of-memory Datasets

11.1 Introduction

11.1.1 Out-of-memory Datasets

Some datasets are so large that it becomes infeasible to load them into memory all at the same time. Other visualisation techniques might only be able to run on a smaller subset of the data; however, this runs the risk of potentially missing out on important smaller patterns in the data.

ivis was developed to address the issue of dimensionality reduction in very large datasets through batch-wise training of the neural network on data stored HDF5 format. Since training occurs in batches, the whole dataset does not need to be loaded into memory at once, and can instead be loaded from disk in chunks. In this example, we will show how ivis can scale up and be used to visualize massive datasets that don’t fit into memory.

11.2 Example

11.2.1 Data Selection

In this example we will make use of the KDD Cup 1999 dataset. Although the dataset can be easily read-in to RAM, it provides a toy example for a general use case. The KDD99 dataset contains network traffic, with the competition task being to detect network intruders. The dataset is unbalanced, with the majority of traffic being normal.

11.2.2 Data Preparation

To train ivis on an out-of-memory dataset, the dataset must first be converted into the h5 file format. There are numerous methods of doing this using various external tools such as Apache Spark. In this example, we will assume that the dataset has already been preprocessed and converted to .h5 format.
11.2.3 Dimensionality Reduction

To train on a h5 file that exists on disk, we can use a Keras utility class, the HDF5Matrix class. This will allow us to run ivis on the HDF5Matrix object using the fit method. We will train ivis in unsupervised mode for 5 epochs to speed up training; other hyperparameters are left at their default values.

Note: When training on a h5 dataset, we recommend to use the shuffle_mode='batch' option in the fit method. This will speed up the training process by pulling a batch of data from disk and shuffling that batch, rather than shuffling across the whole dataset.

```python
from tensorflow.keras.utils import HDF5Matrix

X = HDF5Matrix(h5_filepath, 'data')
y = HDF5Matrix(h5_filepath, 'labels')

model = Ivis(epochs=5)
model.fit(X, shuffle_mode='batch')  # Shuffle within batches when using h5 files

y_pred = model.transform(X)
```

11.2.4 Visualisations

```python
plt.figure()
plt.scatter(x=y_pred[:, 0], y=y_pred[:, 1], c=y)
plt.set_xlabel('ivis 1')
plt.set_ylabel('ivis 2')
plt.show()
```
With anomalies being shown in yellow, we can see that \textit{ivis} is able to pin point anomalous observations.

11.3 Conclusions

\textit{ivis} is able to scale and deal with the massive, out-of-memory datasets found in the real world by training directly on h5 files. Additionally, it can effectively learn embeddings in an unbalanced dataset without labels.
Real-world datasets are becoming increasingly complex, both due to the number of observations and the ever-growing feature space. For example, single cell experiments can easily monitor 20,000 features across 1,000,000 observations. Dimensionality reduction (DR) algorithms enable useful exploration of feature-rich datasets. Nevertheless, each algorithm has different computational complexity that impacts its real-world use case. We will now investigate how runtime performance of the ivis algorithm scales with increasing dataset size.

Algorithm implementation has significant impact on performance. In these experiments, we will use mainly scikit-learn implementation, with the exception of multicore t-SNE. Two benchmark datasets will be used to assess runtimes: MNIST (up to 70,000 observations) and the first 1,000,000 integers represented as binary vectors indicating their prime factors. For all algorithms, default settings were adopted. Ivis hyperparameters were fixed to: embedding_dims=2, k=15, model=‘szubert’, and n_epochs_without_progress=3. Our previous experiments have shown that these defaults yield accurate embeddings.

Subsamples were created using scikit-learn’s resample method, producing stratified random sub-samples. For each run, three random subsamples were generated to create a distribution of values. All runs were carried out on a 16-core machine with 32GB of RAM.

12.1 Effects of Data Size on Performance

We begin with small subsample sizes – 1,000 to 5,000 observations. It becomes clear that MDS will not be usable as we increase subsample sizes. Additionally, scikit-learn’s implementation of t-SNE is beginning to slow down as we approach 5,000 subsamples. UMAP and multicore t-SNE perform very well.
That’s a reasonable start - let’s increase the subset size. Isomap and scikit-learn’s t-SNE seem to have reached their performance threshold and are now experiencing considerable slow down. ivis appears to be on-par with multicore t-SNE, albeit a little faster, whilst UMAP is the winner hands down!
Now, let’s push beyond toy datasets and examine sizes that are more likely to be encountered in real-world problems. For this experiment we generated 1,000,000 integers (observations) with corresponding binary vectors indicating their prime factors (features). We immediately see that ivis is fast. Additionally, whilst UMAP timings increase exponentially, ivis execution speed does not change much on subsamples with greater than 750,000 observations.
We can conclude that for smaller datasets (< 100,000 observations), UMAP and multicore t-SNE are excellent options. However, ivis excels at dealing with very large datasets. Furthermore, ivis appears to generate more accurate embeddings – a perk that comes with a slightly longer runtime for smaller datasets.
Distance Preservation Benchmarks

Dimensionality reduction is crucial for effective manipulation of high-dimensional datasets. However, low-dimensional representations often fail to capture complex global and local relationships in many real-world datasets. Here, we assess how well ivis preserves inter-cluster distances in two well-characterised datasets and benchmark performance across several linear and non-linear dimensinality reduction approaches.

13.1 Datasets Selection

Two benchmark datasets were used: MNIST database of handwritten digits (70,000 observations, 784 features) and Levine dataset (104,184 observations, 32 features). The Levine dataset was obtained from Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. The 32-dimensional Levine dataset can be downloaded directly from Cytobank.

Both datasets have target Y variables. For MNIST, targets take on values [0, 9] and represent hand-written digits, whilst in the Levine dataset targets are manually annotated cell populations [0-13]. Prior to preprocessing, values in both datasets were scaled to [0, 1] range.

- MNIST preprocessing:

```python
from sklearn.datasets import fetch_openml
from sklearn.preprocessing import MinMaxScaler
X, Y = fetch_openml('mnist_784', version=1, return_X_y=True)
X = MinMaxScaler().fit_transform(X)
```

- Levine preprocessing:

```python
import pandas as pd
from sklearn.preprocessing import LabelEncoder, MinMaxScaler

data = pd.read_csv('..//data/levine_32dm_notransform.txt')
data = data.dropna()

features = ['CD45RA', 'CD133', 'CD19', 'CD22', 'CD11b', 'CD4', 'CD8']
```
To establish how well ivis and other dimensionality reduction techniques preserve data structure in low-dimensional space, a Euclidean distance matrix between centroids of the target values in Levine and MNIST datasets was created for the original datasets, respective ivis embeddings, as well as UMAP, t-SNE, MDS, and Isomap embeddings. The level of correlation between the original distance matrix and the distance matrices in the embedding spaces was then assessed using the Mantel test. Pearson’s product-moment correlation coefficient (PCC) was used to quantitate concordance between original data and low-dimensional representations. Random stratified subsamples (n=50) of 1000 observations were used to generate a continuum of PCC values for each embedding technique. For all ivis runs, only two hyperparameters were set: k=15 and model="maaten". These are recommended defaults for datasets with <500,000 observations. For other dimensionality reduction methods, default parameters were used.
The Mantel Test measures correlation between two distance matrices - embedding space and original space Euclidean distances of cluster centroids. From our experiment, we can conclude that \textit{ivis} preserves inter-cluster distances well, with average PCC being ~0.75 in the MNIST and Levine datasets. Importantly, \textit{ivis} outperforms other dimensionality reduction techniques.
Ivis is a technique that uses an artificial neural network for dimensionality reduction, often useful for the purposes of visualization. The network trains on triplets of data-points at a time and pulls positive points together, while pushing more distant points away from each other. Triplets are sampled from the original data using KNN approximation using the Annoy library.

Parameters

- **embedding_dims (int)** – Number of dimensions in the embedding space
- **k (int)** – The number of neighbours to retrieve for each point. Must be less than one minus the number of rows in the dataset.
- **distance (str)** – The loss function used to train the neural network. One of “pn”, “euclidean”, “manhattan_pn”, “manhattan”, “chebyshev”, “chebyshev_pn”, “softmax_ratio_pn”, “softmax_ratio”, “cosine”, “cosine_pn”.
- **batch_size (int)** – The size of mini-batches used during gradient descent while training the neural network. Must be less than the number of rows in the dataset.
- **epochs (int)** – The maximum number of epochs to train the model for. Each epoch the network will see a triplet based on each data-point once.
- **n_epochs_without_progress (int)** – After n number of epochs without an improvement to the loss, terminate training early.
- **margin (float)** – The distance that is enforced between points by the triplet loss functions.
- **ntrees (int)** – The number of random projections trees built by Annoy to approximate KNN. The more trees the higher the memory usage, but the better the accuracy of results.
• **search_k** (*int*) – The maximum number of nodes inspected during a nearest neighbour query by Annoy. The higher, the more computation time required, but the higher the accuracy. The default is \(n_{trees} \times k \), where \(k \) is the number of neighbours to retrieve. If this is set too low, a variable number of neighbours may be retrieved per data-point.

• **precompute** (*bool*) – Whether to pre-compute the nearest neighbours. Pre-computing is a little faster, but requires more memory. If memory is limited, try setting this to False.

• **model** (*str*) – str or keras.models.Model. The keras model to train using triplet loss. If a model object is provided, an embedding layer of size ‘embedding_dims’ will be appended to the end of the network. If a string, a pre-defined network by that name will be used. Possible options are: ‘szubert’, ‘hinton’, ‘maaten’. By default the ‘szubert’ network will be created, which is a selu network composed of 3 dense layers of 128 neurons each, followed by an embedding layer of size ‘embedding_dims’.

• **supervision_metric** (*str*) – str or function. The supervision metric to optimize when training keras in supervised mode. Supports all of the classification or regression losses included with keras, so long as the labels are provided in the correct format. A list of keras’ loss functions can be found at https://keras.io/losses/.

• **supervision_weight** (*float*) – Float between 0 and 1 denoting the weighting to give to classification vs triplet loss when training in supervised mode. The higher the weight, the more classification influences training. Ignored if using Ivis in unsupervised mode.

• **annoy_index_path** (*str*) – The filepath of a pre-trained annoy index file saved on disk. If provided, the annoy index file will be used. Otherwise, a new index will be generated and saved to disk in the current directory as ‘annoy.index’.

• **callbacks** (*list[keras.callbacks.Callback]*) – List of keras Callbacks to pass model during training, such as the TensorBoard callback. A set of ivis-specific callbacks are provided in the ivis.nn.callbacks module.

• **build_index_on_disk** (*bool*) – Whether to build the annoy index directly on disk. Building on disk should allow for bigger datasets to be indexed, but may cause issues. If None, on-disk building will be enabled for Linux, but not Windows due to issues on Windows.

• **verbose** (*int*) – Controls the volume of logging output the model produces when training. When set to 0, silences outputs, when above 0 will print outputs.

fit (*X*, *Y=None*, *shuffle_mode=True*)

Fit an ivis model.

\(X \) [array, shape (n_samples, n_features)] Data to be embedded.

\(Y \) [array, shape (n_samples)] Optional array for supervised dimentionality reduction. If \(Y \) contains -1 labels, and ‘sparse_categorical_crossentropy’ is the loss function, semi-supervised learning will be used.

returns an instance of self

fit_transform (*X*, *Y=None*, *shuffle_mode=True*)

Fit to data then transform

\(X \) [array, shape (n_samples, n_features)] Data to be embedded.

\(Y \) [array, shape (n_samples)] Optional array for supervised dimentionality reduction. If \(Y \) contains -1 labels, and ‘sparse_categorical_crossentropy’ is the loss function, semi-supervised learning will be used.
X_new [transformed array, shape (n_samples, embedding_dims)] Embedding of the new data in low-dimensional space.

get_params(deep=True)
Get parameters for this estimator.

- **deep** [bool, default=True] If True, will return the parameters for this estimator and contained subobjects that are estimators.

- **params** [mapping of string to any] Parameter names mapped to their values.

load_model(folder_path)
Load ivis model

- **folder_path** [string] Path to serialised model files and metadata

save_model(folder_path, overwrite=False)
Save an ivis model

- **folder_path** [string] Path to serialised model files and metadata

score_samples(X)
Passes X through classification network to obtain predicted supervised values. Only applicable when trained in supervised mode.

- **X** [array, shape (n_samples, n_features)] Data to be passed through classification network.

- **X_new** [array, shape (n_samples, embedding_dims)] Softmax class probabilities of the data.

set_params(**params)
Set the parameters of this estimator.

- **params** [dict] Estimator parameters.

self [object] Estimator instance.

transform(X)
Transform X into the existing embedded space and return that transformed output.

- **X** [array, shape (n_samples, n_features)] New data to be transformed.

- **X_new** [array, shape (n_samples, embedding_dims)] Embedding of the new data in low-dimensional space.
KNN retrieval using an Annoy index.

```python
ivis.data.knn.build_annoy_index(X, path, ntrees=50, build_index_on_disk=True, verbose=1)
```

Build a standalone annoy index.

Parameters

- `X (array)` – numpy array with shape (n_samples, n_features)
- `path (str)` – The filepath of a trained annoy index file saved on disk.
- `ntrees (int)` – The number of random projections trees built by Annoy to approximate KNN. The more trees the higher the memory usage, but the better the accuracy of results.
- `build_index_on_disk (bool)` – Whether to build the annoy index directly on disk. Building on disk should allow for bigger datasets to be indexed, but may cause issues. If None, on-disk building will be enabled for Linux, but not Windows due to issues on Windows.
- `verbose (int)` – Controls the volume of logging output the model produces when training. When set to 0, silences outputs, when above 0 will print outputs.
ivis.data.knn, 61
Index

B
build_annoy_index() *(in module ivis.data.knn)*, 61

E
EmbeddingsImage *(class in ivis.nn.callbacks)*, 26
EmbeddingsLogging *(class in ivis.nn.callbacks)*, 26

F
fit() *(ivis.Ivis method)*, 58
fit_transform() *(ivis.Ivis method)*, 58

G
get_params() *(ivis.Ivis method)*, 59

I
ivis *(class in ivis)*, 57
ivis.data.knn *(module)*, 61

L
load_model() *(ivis.Ivis method)*, 59

M
ModelCheckpoint *(class in ivis.nn.callbacks)*, 25

S
save_model() *(ivis.Ivis method)*, 59
score_samples() *(ivis.Ivis method)*, 59
set_params() *(ivis.Ivis method)*, 59

T
TensorBoardEmbeddingsImage *(class in ivis.nn.callbacks)*, 27
transform() *(ivis.Ivis method)*, 59